Enhanced nonlinear optical responses of graphene in multi-frequency topological edge modes
نویسندگان
چکیده
منابع مشابه
Bloch Theory-based Gradient Recovery Method for Computing Topological Edge Modes in Photonic Graphene
Photonic graphene, a photonic crystal with honeycomb structures, has been intensively studied in both theoretical and applied fields. Similar to graphene which admits Dirac Fermions and topological edge states, photonic graphene supports novel and subtle propagating modes (edge modes) of electromagnetic waves. These modes have wide applications in many optical systems. In this paper, we propose...
متن کاملNonlinear Responses and Optical Limiting Behavior of Ag Nanoparticle Suspension
In this study, the nonlinear optical properties and optical limiting performance of the silver nanoparticles (AgNPs) in distilled water are investigated. The nonlinear absorption coefficient of the colloid is measured by the Z-scan technique. The optical limiting behavior of the AgNP suspension is investigated under exposure to nanosecond laser pulses at 532 nm. The results show that nonlinear ...
متن کاملEdge-decomposition of topological indices
The topological indices, defined as the sum of contributions of all pairs of vertices (among which are the Wiener, Harary, hyper–Wiener indices, degree distance, and many others), are expressed in terms of contributions of edges and pairs of edges.
متن کاملOptical control of edge chirality in graphene.
We performed optical annealing experiments at the edges of nanopatterned graphene to study the resultant edge reconstruction. The lithographic patterning direction was orthogonal to a zigzag edge. μ-Raman spectroscopy shows an increase in the polarization contrast of the G band as a function of annealing time. Furthermore, transport measurements reveal a 50% increase of the GNR energy gap after...
متن کاملEnhanced Nonlinear-optical Responses of Disordered Clusters and Composites
1. Introduction Clusters and nanocomposites belong to so-called nanostructured materials. Properties of such materials may be dramatically different from those of bulk materials with identical chemical composition. Confinement of atoms, electrons, phonons, electric fields, etc., in a small spatial region modifies spectral properties (shifts quantum levels, changes transition probabilities), and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2019
ISSN: 1094-4087
DOI: 10.1364/oe.27.032746